Repression of Six3 by a corepressor regulates rhodopsin expression.

نویسندگان

  • Bramanandam Manavathi
  • Shaohua Peng
  • Suresh K Rayala
  • Amjad H Talukder
  • Minhua H Wang
  • Rui-An Wang
  • Seetharaman Balasenthil
  • Neeraj Agarwal
  • Laura J Frishman
  • Rakesh Kumar
چکیده

Here, we provide gain-of-function, loss-of function, and molecular evidence supporting genetic interactions between metastasis associated protein 1 (MTA1) and Six3 and between Six3 and rhodopsin. We discovered that MTA1 physically interacts with the Six3 chromatin in a histone deacetylase-dependent manner, leading to transcriptional suppression of the Six3 gene. MTA1 is also a Six3-interacting corepressor that contributes to a self-negative regulation of Six3 transcription by Six3. In contrast, deletion of the MTA1 alleles in murine embryonic fibroblasts or its knockdown in rat retinal ganglion cells stimulates Six3 expression. MTA1 inactivation in the MTA1-null mice results in an elevated Six3 level and proliferation of the retina cells with no obvious abnormities in eye formation. However, unexpectedly, we discovered an enhanced recruitment of Six3 to the rhodopsin chromatin in retina from the MTA1-null mice; Six3's homeodomain interacts with specific DNA elements in the rhodopsin promoter to stimulate its transcription, resulting in increased rhodopsin expression. Further, in holoprosencephaly patients, Six3 protein with a naturally occurring deletion mutation in the helix 3 of the homeodomain does not bind to rhodopsin DNA or stimulate rhodopsin transcription, implying a potential defective rhodopsin pathway in the affected holoprosencephaly patients. Further Six3 cooperates with Crx or NRL in stimulating transcription from the rhodopsin-luc. These findings reveal a previously unrecognized role for the MTA1 as an upstream modifier of Six3 and indicate that Six3 is a direct stimulator of rhodopsin expression, thus revealing a putative role for the MTA1/Six3/rhodopsin pathway in vertebrate eye.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Six3-mediated auto repression and eye development requires its interaction with members of the Groucho-related family of co-repressors.

Recent findings suggest that Six3, a member of the evolutionarily conserved So/Six homeodomain family, plays an important role in vertebrate visual system development. However, little is known about the molecular mechanisms by which this function is accomplished. Although several members of the So/Six gene family interact with members of the eyes absent (Eya) gene family and function as transcr...

متن کامل

Six3 Represses Nodal Activity to Establish Early Brain Asymmetry in Zebrafish

The vertebrate brain is anatomically and functionally asymmetric; however, the molecular mechanisms that establish left-right brain patterning are largely unknown. In zebrafish, asymmetric left-sided Nodal signaling within the developing dorsal diencephalon is required for determining the direction of epithalamic asymmetries. Here, we show that Six3, a transcription factor essential for forebra...

متن کامل

Rhodopsin targeted transcriptional silencing by DNA-binding

Transcription factors (TFs) operate by the combined activity of their DNA-binding domains (DBDs) and effector domains (EDs) enabling the coordination of gene expression on a genomic scale. Here we show that in vivo delivery of an engineered DNA-binding protein uncoupled from the repressor domain can produce efficient and gene-specific transcriptional silencing. To interfere with RHODOPSIN (RHO)...

متن کامل

Six3 cooperates with Hedgehog signaling to specify ventral telencephalon by promoting early expression of Foxg1a and repressing Wnt signaling.

Six3 exerts multiple functions in the development of anterior neural tissue of vertebrate embryos. Whereas complete loss of Six3 function in the mouse results in failure of forebrain formation, its hypomorphic mutations in human and mouse can promote holoprosencephaly (HPE), a forebrain malformation that results, at least in part, from abnormal telencephalon development. However, the roles of S...

متن کامل

The homeotic protein Six3 is a coactivator of the nuclear receptor NOR-1 and a corepressor of the fusion protein EWS/NOR-1 in human extraskeletal myxoid chondrosarcomas.

Nuclear receptors represent a large family of transcription factors involved in development, differentiation, homeostasis, and cancer. In recent years, a growing number of cofactors has been discovered that participate in the regulation of the transcriptional activity of these proteins. We present in this study the identification of a cofactor, the homeotic protein Six3, which differentially re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 32  شماره 

صفحات  -

تاریخ انتشار 2007